Search results for "Texture synthesis"
showing 6 items of 6 documents
Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis
2016
This paper studies a combination of generative Markov random field (MRF) models and discriminatively trained deep convolutional neural networks (dCNNs) for synthesizing 2D images. The generative MRF acts on higher-levels of a dCNN feature pyramid, controling the image layout at an abstract level. We apply the method to both photographic and non-photo-realistic (artwork) synthesis tasks. The MRF regularizer prevents over-excitation artifacts and reduces implausible feature mixtures common to previous dCNN inversion approaches, permitting synthezing photographic content with increased visual plausibility. Unlike standard MRF-based texture synthesis, the combined system can both match and adap…
Texture Synthesis for Digital Restoration in the Bit-Plane Representation
2007
In this paper we propose a new approach to handle the problem of restoration of grayscale textured images. The purpose is to recovery missing data of a damaged area. The key point is to decompose an image in its bit-planes, and to process bits rather than pixels. We propose two texture synthesis methods for restoration. The first one is a random generation process, based on the conditional probability of bits in the bit-planes. It is designed for images with stochastic textures. The second one is a best-matching method, running on each bit-plane, that is well suited to synthesize periodic patterns. Results are compared with a state-of-the-art restoration algorithm.
Filling-in Gaps in Textured Images Using Bit-Plane Statistics
2008
In this paper we propose a novel approach for the texture analysis-synthesis problem, with the purpose to restore missing zones in greyscale images. Bit-plane decomposition is used, and a dictionary is build with bit-blocks statistics for each plane. Gaps are reconstructed with a conditional stochastic process, to propagate texture global features into the damaged area, using information stored in the dictionary. Our restoration method is simple, easy and fast, with very good results for a large set of textured images. Results are compared with a state-of-the-art restoration algorithm.
Advanced Indexing Schema for Imaging Applications: Three-Case Studies
2007
Image Inpainting Methods Evaluation and Improvement
2014
With the upgrowing of digital processing of images and film archiving, the need for assisted or unsupervised restoration required the development of a series of methods and techniques. Among them, image inpainting is maybe the most impressive and useful. Based on partial derivative equations or texture synthesis, many other hybrid techniques have been proposed recently. The need for an analytical comparison, beside the visual one, urged us to perform the studies shown in the present paper. Starting with an overview of the domain, an evaluation of the five methods was performed using a common benchmark and measuring the PSNR. Conclusions regarding the performance of the investigated algorith…
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
2016
This paper proposes Markovian Generative Adversarial Networks (MGANs), a method for training generative networks for efficient texture synthesis. While deep neural network approaches have recently demonstrated remarkable results in terms of synthesis quality, they still come at considerable computational costs (minutes of run-time for low-res images). Our paper addresses this efficiency issue. Instead of a numerical deconvolution in previous work, we precompute a feed-forward, strided convolutional network that captures the feature statistics of Markovian patches and is able to directly generate outputs of arbitrary dimensions. Such network can directly decode brown noise to realistic textu…